In Year 9, Students start the three year KS4 mathematics curriculum.

The aim of the curriculum is to become fluent in the fundamentals of mathematics, reason mathematically and solve problems.

TERM 1
Number
- Add, subtract, multiply and divide decimals, whole
numbers including any number between 0 and 1;

- Put digits in the correct place in a decimal calculation and use one calculation to find the answer to another;
- Use the product rule for counting (i.e. if there are m ways of doing one task and for each of these, there are n ways of doing another task, then the total number of ways the two tasks can be done is $m \times n$ ways);
- Round numbers to the nearest $10,100,1000$, the nearest integer, to a given number of decimal places and to a given number of significant figures;
- Estimate answers to one- or two-step calculations, including use of rounding numbers and formal estimation to 1 significant figure: mainly whole numbers and then decimals.
- Use index notation for integer powers of 10 , including negative powers;
- Recognise powers of 2, 3, 4, 5;
- Use the square, cube and power keys on a calculator and estimate powers and roots of any given positive number, by considering the values it must lie between, e.g. the square root of 42 must be between 6 and 7 ;

TERM 2

CONTENT/SKILLS

Fractions, ratios and percentages

- Express a given number as a fraction of another;
- Find equivalent fractions and compare the size of fractions;
- Write a fraction in its simplest form, including using it to simplify a calculation, e.g. $50 \div 20=\frac{50}{20}=\frac{5}{2}=\mathbf{2 . 5}$;
- Find a fraction of a quantity or measurement, including within a context;
- Convert a fraction to a decimal to make a calculation easier;
- Convert between mixed numbers and improper fractions;
- Add and subtract fractions, including mixed numbers;
- Multiply and divide fractions, including mixed numbers and whole numbers and vice versa;
- Understand and use unit fractions as multiplicative inverses;
- By writing the denominator in terms of its prime factors, decide whether fractions can be converted to recurring or terminating decimals;
- Convert a fraction to a recurring decimal and vice versa;
- Find the reciprocal of an integer, decimal or fraction;
- Convert between fractions, decimals and percentages;

TERM 3

Graphs

- Identify and plot points in all four quadrants;
- Draw and interpret straight-line graphs for real-life situations, including ready reckoner graphs, conversion graphs, fuel bills, fixed charge and cost per item;
- Draw distance-time and velocity-time graphs;
- Use graphs to calculate various measures (of individual sections), including: unit price (gradient), average speed, distance, time, acceleration; including using enclosed areas by counting squares or using areas of trapezia, rectangles and triangles;
- Find the coordinates of the midpoint of a line segment with a diagram given and coordinates;
- Find the coordinates of the midpoint of a line segment from coordinates;
- Calculate the length of a line segment given the coordinates of the end points;
- Find the coordinates of points identified by geometrical information.
- Find the equation of the line through two given points
- Plot and draw graphs of $y=a, x=a, y=x$ and $y=-x$ drawing and recognising lines parallel to axes, plus $y=x$ and $y=-x$;
- Identify and interpret the gradient of a line segment;
- Find the value of calculations using indices including positive, fractional and negative indices;
- Recall that $n^{0}=1$ and $n^{-1}=\frac{1}{n}$ for positive integers n as well as, $n^{\frac{1}{2}}=\sqrt{n}$ and $n^{\frac{1}{3}}=\sqrt[3]{n}$ for any positive number n;
- Understand that the inverse operation of raising a positive number to a power n is raising the result of this operation to the power $\frac{1}{n}$;
- Use index laws to simplify and calculate the value of numerical expressions involving multiplication and division of integer powers, fractional and negative powers, and powers of a power;
- Solve problems using index laws;
- Use brackets and the hierarchy of operations up to and including with powers and roots inside the brackets, or raising brackets to powers or taking roots of brackets;
- Use an extended range of calculator functions, including $+,-, \times, \div, x^{2}, \sqrt{x}$, memory, $x^{y}, x^{\frac{1}{y}}$, brackets;
- Use calculators for all calculations: positive and negative numbers, brackets, powers and roots, four operations.
- Convert large and small numbers into standard form and vice versa;
- Add, subtract, multiply and divide numbers in standard form;
- Interpret a calculator display using standard form and know how to enter numbers in standard form;
- Understand surd notation, e.g. calculator gives answer to $\sqrt{8}$ as $2 \sqrt{2}$;
- \quad Simplify surd expressions involving squares (e.g. $\sqrt{12}=\sqrt{(4 \times 3)}=\sqrt{4} \times \sqrt{3}=2 \sqrt{3})$.

Express a given number as a percentage of another number;

- Express one quantity as a percentage of another where the percentage is greater than 100%
- Find a percentage of a quantity;
- Find the new amount after a percentage increase or decrease;
- Work out a percentage increase or decrease, including: simple interest, income tax calculations, value of profit or loss, percentage profit or loss;
- Compare two quantities using percentages, including a range of calculations and contexts such as those involving time or money
- Find a percentage of a quantity using a multiplier and use a multiplier to increase or decrease by a percentage in any scenario where percentages are used;
- Find the original amount given the final amount after a percentage increase or decrease (reverse percentages), including VAT
- Use calculators for reverse percentage calculations by doing an appropriate division;
- Use percentages in real-life situations, including percentages greater than 100\%;
- Describe percentage increase/decrease with fractions, e.g. 150% increase means $2 \frac{1}{2}$ times as big;
- Understand that fractions are more accurate in calculations than rounded percentage or decimal equivalents, and choose fractions, decimals or percentages appropriately for calculations.
- Express the division of a quantity into a number parts as a ratio;
- Write ratios in form $1: m$ or $m: 1$ and to describe a situation;
- Recognise that equations of the form $y=m x+c$ correspond to straight-line graphs in the coordinate plane;
- Identify and interpret the gradient and y-intercept of a linear graph given by equations of the form $y=m x+c$;
- Find the equation of a straight line from a graph in the form $y=m x+c$;
- Plot and draw graphs of straight lines of the form $y=m x+$ c with and without a table of values;
- Sketch a graph of a linear function, using the gradient and y-intercept (i.e. without a table of values);
- Find the equation of the line through one point with a given gradient;
- Identify and interpret gradient from an equation $a x+b y=$ c;
- Find the equation of a straight line from a graph in the form $a x+b y=c$;
- Plot and draw graphs of straight lines in the form $a x+b y=$ c;
- Interpret and analyse information presented in a range of linear graphs:
- use gradients to interpret how one variable changes in relation to another;
- find approximate solutions to a linear equation from a graph;
- identify direct proportion from a graph
- find the equation of a line of best fit (scatter graphs) to model the relationship between quantities;
- Explore the gradients of parallel lines and lines perpendicular to each other;
- Interpret and analyse a straight-line graph and generate equations of lines parallel and perpendicular to the given line;

Algebra

- Use algebraic notation and symbols correctly;
- Know the difference between a term, expression, equation, formula and an identity;
- Write and manipulate an expression by collecting like terms;
- Substitute positive and negative numbers into expressions such as $3 x+4$ and $2 x^{3}$ and then into expressions involving brackets and powers;
- Substitute numbers into formulae from mathematics and other subject using simple linear formulae, e.g. $l \times w, v=u+a t$
- \quad Simplify expressions by cancelling, e.g. $\frac{4 x}{2}=2 x$;
- Use instances of index laws for positive integer powers including when multiplying or dividing algebraic terms;
- Use instances of index laws, including use of zero, fractional and negative powers;
- Multiply a single term over a bracket and recognise factors of algebraic terms involving single brackets and simplify expressions by factorising, including subsequently collecting like terms;
- Expand the product of two linear expressions, i.e. double brackets working up to negatives in both brackets and also similar to $(2 x+3 y)(3 x-y)$;
- Know that squaring a linear expression is the same as expanding double brackets;
- Factorise quadratic expressions of the form $a x^{2}+b x$ $+c$;
- Factorise quadratic expressions using the difference of two squares.
- Set up simple equations from word problems and derive simple formulae;
- Write ratios in their simplest form, including three-part ratios;
- Divide a given quantity into two or more parts in a given part : part or part : whole ratio
- Use a ratio to find one quantity when the other is known;
- Write a ratio as a fraction and as a linear function;
- Identify direct proportion from a table of values, by comparing ratios of values;
- Use a ratio to compare a scale model to real-life object;
- Use a ratio to convert between measures and currencies, e.g. $£ 1.00=€ 1.36$;
- Scale up recipes
- Convert between currencies.

Angles and trigonometry

- Classify quadrilaterals by their geometric properties and distinguish between scalene, isosceles and equilateral triangles;
- Understand 'regular' and 'irregular' as applied to polygons;
- Understand the proof that the angle sum of a triangle is 180°, and derive and use the sum of angles in a triangle;
- Use symmetry property of an isosceles triangle to show that base angles are equal;
- Find missing angles in a triangle using the angle sum in a triangle AND the properties of an isosceles triangle;
- Understand a proof of, and use the fact that, the exterior angle of a triangle is equal to the sum of the interior angles at the other two vertices;
- Explain why the angle sum of a quadrilateral is 360°; use the angle properties of quadrilaterals and the fact that the angle sum of a quadrilateral is 360°

Select and use the fact that when $y=m x+c$ is the equation of a straight line, then the gradient of a line parallel to it will have a gradient of m and a line perpendicular to this line will have a gradient of $-\frac{1}{m}$.

- Recognise a linear, quadratic, cubic, reciprocal and circle graph from its shape;
- Generate points and plot graphs of simple quadratic functions, then more general quadratic functions;
- Find approximate solutions of a quadratic equation from the graph of the corresponding quadratic function;
- Interpret graphs of quadratic functions from real-life problems;
- Draw graphs of simple cubic functions using tables of values;
- Interpret graphs of simple cubic functions, including finding solutions to cubic equations;
- Draw graphs of the reciprocal function $y=\frac{1}{x}$ with $x \neq 0$ using tables of values;
- Draw circles, centre the origin, equation $x^{2}+y^{2}=r^{2}$.

Area and volume

- Recall and use the formulae for the area of a triangle, rectangle, trapezium and parallelogram using a variety of metric measures;
- Calculate the area of compound shapes made from triangles, rectangles, trapezia and parallelograms using a variety of metric measures;
- Find the perimeter of a rectangle, trapezium and parallelogram using a variety of metric measures;
- Calculate the perimeter of compound shapes made from triangles and rectangles;
- Estimate area and perimeter by rounding measurements to 1 significant figure to check reasonableness of answers;
- Understand the \neq symbol (not equal), e.g. $6 x+4 \neq$ $3(x+2)$, and introduce identity \equiv sign;
- Solve linear equations, with integer coefficients, in which the unknown appears on either side or on both sides of the equation;
- Solve linear equations which contain brackets, including those that have negative signs occurring anywhere in the equation, and those with a negative solution;
- Solve linear equations in one unknown, with integer or fractional coefficients;
- \quad Set up and solve linear equations to solve a problem;
- Derive a formula and set up simple equations from word problems, then solve these equations, interpreting the solution in the context of the problem;
- Substitute positive and negative numbers into a formula, solve the resulting equation including brackets, powers or standard form;
- Use and substitute formulae from mathematics and other subjects, including the kinematics formulae v $=u+a t, v^{2}-u^{2}=2 a s$, and $s=u t+\frac{1}{2} a t^{2}$;
- Change the subject of a simple formula, i.e. linear one-step, such as $x=4 y$
- Change the subject of a formula, including cases where the subject is on both sides of the original formula, or involving fractions and small powers of the subject;
- Simple proofs and use of \equiv in "show that" style questions; know the difference between an equation and an identity;
- Understand and use the angle properties of parallel lines and find missing angles using the properties of corresponding and alternate angles, giving reasons;
- Use the angle sums of irregular polygons
- Calculate and use the sums of the interior angles of polygons; use the sum of angles in a triangle and use the angle sum in any polygon to derive the properties of regular polygons;
- Use the sum of the exterior angles of any polygon is 360°;
- Use the sum of the interior angles of an n-sided polygon;
- Use the sum of the interior angle and the exterior angle is 180°;
- Find the size of each interior angle, or the size of each exterior angle, or the number of sides of a regular polygon, and use the sum of angles of irregular polygons
- Calculate the angles of regular polygons and use these to solve problems;
- Use the side/angle properties of compound shapes made up of triangles, lines and quadrilaterals, including solving angle and symmetry problems for shapes in the first quadrant, more complex problems and using algebra
- Use angle facts to demonstrate how shapes would 'fit together', and work out interior angles of shapes in a pattern
- Understand, recall and use Pythagoras' Theorem in 2D;
- Given three sides of a triangle, justify if it is right-angled or not;
- Calculate the length of the hypotenuse in a right-angled triangle (including decimal lengths and a range of units);
- Recall the definition of a circle and name and draw parts of a circle;
- Recall and use formulae for the circumference of a circle and the area enclosed by a circle (using circumference = $2 \pi r=\pi d$ and area of a circle $=\pi r^{2}$) using a variety of metric measures;
- Use $\pi \approx 3.142$ or use the π button on a calculator;
- Calculate perimeters and areas of composite shapes made from circles and parts of circles (including semicircles, quarter-circles, combinations of these and also incorporating other polygons);
- Calculate arc lengths, angles and areas of sectors of circles;
- Find radius or diameter, given area or circumference of circles in a variety of metric measures;
- Give answers to an appropriate degree of accuracy or in terms of π;
- Form equations involving more complex shapes and solve these equations
- Find the surface area of prisms using the formulae for triangles and rectangles, and other (simple) shapes with and without a diagram;
- Draw sketches of 3D solids and identify planes of symmetry of 3D solids, and sketch planes of symmetry;
- Recall and use the formula for the volume of a cuboid or prism made from composite 3D solids using a variety of metric measures;
- Convert between metric measures of volume and capacity, e.g. $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$;
- Use volume to solve problems
- Estimating surface area, perimeter and volume by rounding measurements to 1 significant figure to check reasonableness of answers;
- Use $\pi \approx 3.142$ or use the π button on a calculator;
- Find the volume and surface area of a cylinder;
- Use iteration to find approximate solutions to equations, for simple equations in the first instance, then quadratic and cubic equations.
- Recognise simple sequences including at the most basic level odd, even, triangular, square and cube numbers and Fibonacci-type sequences (including those involving numbers in standard form or index form);
- Generate sequences of numbers, squared integers and sequences derived from diagrams;
- Describe in words a term-to-term sequence and identify which terms cannot be in a sequence;
- Generate specific terms in a sequence using the position-to-term rule and term-to-term rule;
- Find and use (to generate terms) the nth term of an arithmetic sequence;
- Use the nth term of an arithmetic sequence to decide if a given number is a term in the sequence, or find the first term above or below a given number;
- Identify which terms cannot be in a sequence by finding the nth term;
- Continue a quadratic sequence and use the nth term to generate terms;
- Find the nth term of quadratic sequences;
- Distinguish between arithmetic and geometric sequences;
- Use finite/infinite and ascending/descending to describe sequences;
- Recognise and use simple geometric progressions ($r n$ where n is an integer, and r is a rational number >0 or a surd);
- Find the length of a shorter side in a right-angled triangle;
- Calculate the length of a line segment $A B$ given pairs of points:
- Give an answer to the use of Pythagoras' Theorem in surd form;
- Understand, use and recall the trigonometric ratios sine, cosine and tan, and apply them to find angles and lengths in general triangles in 2D figures;
- Use the trigonometric ratios to solve 2D problems;
- Find angles of elevation and depression;
- Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}, 30^{\circ}$, $45^{\circ}, 60^{\circ}$ and 90°; know the exact value of $\tan \theta$ for $\theta=$ $0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°.
- Recall and use the formula for volume of pyramid;
- Find the surface area of a pyramid;
- Use the formulae for volume and surface area of spheres and cones;
- Solve problems involving more complex shapes and solids including segments of circles and frustums of cones;
- Find the surface area and volumes of compound solids constructed from cubes, cuboids, cones, pyramids, spheres, hemispheres, cylinders;
- Give answers to an appropriate degree of accuracy or in terms of π;
- Form equations involving more complex shapes and solve these equations
- Calculate the upper and lowers bounds of numbers given to varying degrees of accuracy;
- Calculate the upper and lower bounds of an expression involving the four operations;
- Find the upper and lower bounds in real-life situations using measurements given to appropriate degrees of accuracy;
- Find the upper and lower bounds of calculations involving perimeters, areas and volumes of 2D and 3D shapes;
- Calculate the upper and lower bounds of calculations, particularly when working with measurements;
- Use inequality notation to specify an error interval due to truncation or rounding.
- Continue geometric progression and find term to term rule, including negative, fraction and decimal terms;
- Solve problems involving sequences from real life situations.

Interpreting and representing data

- Know which charts to use for different types of data sets;
- Produce and interpret composite bar charts;
- Produce and interpret comparative and dual bar charts;
- Produce and interpret pie charts:
- find the mode and the frequency represented by each sector;
- compare data from pie charts that represent different-sized samples;
- Produce and interpret frequency polygons for grouped data:
- from frequency polygons, read off frequency values, compare distributions, calculate total population, mean, estimate greatest and least possible values (and range);
- Produce frequency diagrams for grouped discrete data:
- read off frequency values, calculate total population, find greatest and least values;
- Produce histograms with equal class intervals:
- estimate the median from a histogram with equal class width or any other information, such as the number of people in a given interval;
- Produce line graphs:

```
- read off frequency values, calculate total population, find greatest and least values;
```

- Construct and interpret time-series graphs, comment on trends;
- Compare the mean and range of two distributions, or median or mode as appropriate;
- Recognise simple patterns, characteristics relationships in bar charts, line graphs and frequency polygons;
- Draw and interpret scatter graphs in terms of the relationship between two variables;
- Draw lines of best fit by eye, understanding what these represent
- Identify outliers and ignore them on scatter graphs;
- Use a line of best fit, or otherwise, to predict values of a variable given values of the other variable;
- Distinguish between positive, negative and zero correlation using lines of best fit, and interpret correlation in terms of the problem;
- Understand that correlation does not imply causality, and appreciate that correlation is a measure of the strength of the association between two variables and that zero correlation does not necessarily imply 'no relationship' but merely 'no linear correlation';
- Explain an isolated point on a scatter graph;
- Use the line of best fit make predictions; interpolate and extrapolate apparent trends whilst knowing the dangers of so doing.

KEY ASSESSMENTS	KEY ASSESSMENTS	
HALF TERM 1	HALF TERM 3	HALF TERM 5
Unit assessment	Unit assessment	Unit assessment
HALF TERM 2	HALF TERM 4	HALF TERM 6
End of Term 1 assessment	End of Term 2 assessment	End of Year assessment
Students have access to Mathswatch revision resources and supporting video clips https://vle.mathswatch.co.uk/vle/		
Edexcel Maths GCSE Higher revision guides are available to support learning.		
Students can obtain further revision resources from www.mathsgenie.co.uk and www.corbettmaths.com		

